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In this article, we prove the multiple map analogue of the local-global principle |2, Theorem 3.2]
for periodic orbits of polynomial maps. Indeed, the proof is essentially the same with the single map

case.

1 Notations and Terminologies

Let R be a commutative ring with unity of characteristic zero, and N be a positive integer. For a
collection of endomorphisms S C End(R"), generating a monoid (S) under composition, we say that
a point € RN is S-periodic if its S-orbit Og(x) = {f(x) : f € (S)} is a finite set and (S) acts on
Og(x) by permutations.

We identify a positive integer with the corresponding cardinal number. Let n be a positive integer,
k be a cardinal number, and 7 : K — Sym(n) be a set map, where Sym(n) is the symmetric group
over the set n. Note that m naturally defines a left action of the free monoid k* with x generators
on n. Suppose that this action is transitive. For a collection S = {f;}jcx C End(R") consisting of
x endomorphisms that are not necessarily distinct, we call an S-periodic orbit O is w-periodic if the
action of (S) on O is given by m, that is, for O = {z1,..., 2}, we have f;(2;) = x,;). We call 7 the
type of the periodic orbit.

Denote by Type(R, N, k) the collection of all possible types of periodic orbit given x polynomial
maps in N variables with coefficients in R. More precisely, an element of Type(R, N, k) is a tuple
(n,m : K — Sym(n)) so that there exists a periodic orbit on RY of type 7. Similarly, denote by
Type(R, N) the collection of all possible types of periodic orbit in N variables with coefficients in R,
that is,

Type(R, N) = | Type(R, N, x).

We will prove the following local-global principle.

Theorem 1.1 (The local-global principle). Let R be a Dedekind domain. For all positive integer

N > 2 and cardinal number k, we have

Type(R,N,k)= |  Type(Ry,N,k)= (|  Type(Ry N,x)
peSpec R\{0} peSpec R\{0}
and
Type(R,N)= ]|  Type(R,,N)= (]  Type(R, N).
peSpec R\{0} peSpec R\{0}

Note that [2, Theorem 3.2] is the M =1 case of this theorem.

2 Elementary Properties of Periodic Orbits

Lemma 2.1. Let R be a commutative ring with unity of characteristic zero, and N be a positive integer,

and k be a cardinal number. Let O = {z1,...,2,} be a periodic orbit on RN of type m : k — Sym(n).

(a) Let 0 € AGLN(R) be an invertible affine transformation, that is, o(xz) = Ax + b for some
A€ GLN(R) and b€ RN. Then, o(O) is also a periodic orbit of type .

(b) There ezists a periodic orbit of type m whose coordinates of the points are pairwise distinct.
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Proof. (a) Suppose that O is m-periodic with respect to the collection S C End(R") of endomorphisms.
Then, the set o(O) is w-periodic with respect to

S7={f'=cofoo':fecS}

(b) We can achieve this by applying a suitable 0 € AGLy(R) to O. See |2, Lemma 4.1(v)]. O

3 Local-Global Principle

Theorem 3.1 (The local-global principle). Let R be a Dedekind domain. For all positive integer

N > 2 and cardinal number k, we have

Type(R,N,k)= (| Type(Ry,N,k)= ()|  Type(Ry N,r).
peSpec R\{0} peSpec R\{0}
Proof. Clearly,
Type(R7 Na "{) g Type(Rpa Na "{) g Type(ﬁpa Na "{)

for all p € Spec R\ {0}.
Suppose that (n,7) € Type(ﬁp,N, k) for all p € Spec R \ {0}. For each p € SpecR \ {0} with

#(R/p) < n, let Op = {xp1,...,2pn} be a m-periodic orbit in }AE{JV with respect to the collection
(r1) 4 22

Sy = {fy,}jex of polynomial maps over ﬁp. By Lemma [2.1, we may assume that z, p.is

whenever (i1,71) # (ig,r2) for each p.
For each p € Spec R\ {0}, let ord,, : }?ip — ZU{oo} be the surjective discrete valuation of ﬁp. Pick
M € R so that M satisfies:

(i) For each p € Spec R\ {0} with #(R/p) < n, we have

ordy (M) > ord, H () — (™2

Pt pi2

(i1,r1)#(i2,72)
(ii) For each p € Spec R\ {0} with #(R/p) > n, we have ord,(M) = 0.
Then we construct a nice approximation of xy ;’s in R. Pick xET) eERi=1,...,nandr=1,...,N

satisfying:

(i) For each p € Spec R\ {0} with #(R/p) < n, we have
ordp(xéfl-) — xz(r)) > nordy(M).

(ii) For each p € Spec R\ {0} with #(R/p) > n, we have

. 1 1 2 2
min ¢ ord, H (Iz(1) — xZ(Q)) ,ordy H (xz(i) - $§2)) =0.
i17i2 1702
First, we pick Z1,...,Z, € RY satisfying (i). Then, we pick a1,...,a, € R so that the points

zi= @Y + oM7Y, 7))
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satisfy both (i) and (ii). Note that there are only finitely many primes p € Spec R\{0} with #(R/p) > n
such that

ordy H(x@) (2)) > 0.

i1 ’L2
1712
For such p, since #(R/p) > n and ordy(M) = 0, we may pick ay,...,a, (mod p) so that mgl), .. xS)
(mod p) are pairwise distinct. Hence, we can always pick suitable ay,...,a, € R.
Now, we construct a collection S = {f;}jex of polynomial maps over R so that O = {z1,...,z,}

is m-periodic with respect to S, that is, fj(x;) = T (i) for each i, j. Let fj, j € Kk be polynomials over
R in N variables satisfying f; = fp; (mod M™) for all p € Spec R\ {0} with #(R/p) <n.Fix j €
and r € {1,..., N}. We will put

FOX LX) = T (X X )

n—1 k k
+y Mk [bk [T =2y + B [ ] (2 - x§,2>)]
k=0 v=1

v=1

for suitable by, By, € R so that
ey = 5 (@)
i k—1 k—1 (1)
k=1 v=1 v=1

foralli=1,...,n

We inductively choose coefficients by, By, € R,k = 1,...,n. Note that the equation only depends
on the coefficients b;’s and B;’s with £ < 4. Assume that the coefficients b1,...,b;_1 and B1,...,Bj_1
are chosen so that the equation holds for ¢ = 1,...,l — 1. We will choose b; and B; so that also
holds for 7 = [, that is,

0 f‘”< )
k—1 k—1
- Z M o [T Y — D) + By ] (2 —
k=1 v=1 v=1
The above equation reduces to the linear equation
A+ AB, = A

where

-1
= Mnil H(I'l(l) -
v=1

-1
Ay = M ] (af?) = 2?),
v=1
4= Er?m 7 @)
k—1
—ZM"‘k b [J (2" = +BkH D —a?)
k=1 v=1
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Hence, it sufficies to show that
ng(AlvAQ) ‘ Aa

or equivalently,
ordp(A) > min{ord,(A;),ordy(A2)}

for all p € Spec R\ {0}. If #(R/p) > n, then by our construction of M and a:l(»r)’s, we have

k—1 k-1
min{ord,(A;),ord,(As)} = ordy,(M" ") min {ord,J (H(wl(l) - :rgl))> ,ordy (H(:L'I(Q) — x1()2))> }

v=1 v=1

=0.

If #(R/p) < n, then ordy(A) > (n—141) ordy (M), so we will prove that ordy(As) < (n—1+1)ord, (M)

for s = 1,2, or equivalently,

k—1
ord, (H(azl(s) — xl(,s))> < ordy (M)

v=1

for s = 1, 2. This holds since

and

by construction of M. O

Corollary 3.1.1. Let R be a Dedekind domain. For all positive integer N > 2, we have

Type(R,N)= (|  Type(Ry,N)= (|  Type(R,,N).
peSpec R\{0} peSpec R\{0}

Proof. Clearly,

Type(R,N)C ]| Type(R,,N)C (]  Type(Ry N).
peSpec R\{0} peSpec R\{0}

Suppose that for each p € Spec R\ {0}, we have n € Type(]/?:p, N, kyp) for some cardinal number k. Let
x be the supremum of all xp’s. Then we also have n € Type(ﬁp, N, k) since we may add any number

of redundant polynomial maps. Hence, n € Type(R, N, k), so n € Type(R, N). O

4 Periodic Orbits in Completion

Moreover, when £ is a positive integer, we can show the following result.

Proposition 4.1. Let R be a discrete valuation ring with o valuation v, and R be its completion with

respect to v. Then, for all positive integers N and M, we have

Type(R, N, M) = Type(R, N, M).
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Proof. Clearly, Type(R, N, M) C Type(}A%, N, M). To show the opposite inclusion, let O = {z1,...,z,}
be a m-periodic orbit in BV for polynomial maps over R in S = {f1,..., fm}. By Lemma ﬂ, we may
assume that the coordinates of x;’s are pairwise distinct.

Fix je{l,...,M}andr € {l,...,N}. Put f; = (f;l),...,f;N)), and write

fj(T)(Xh...,XN) =c+taXi+ e X +g(Xh, ., Xy)

with ¢ € E, g€ }/i[Xl, ..., Xn]. Note that the numbers ¢x, k =0, 1,...,n — 1 satisfy the system of n

linear equations

(1)

i

+ -+ cn_l(a:z(»l))"*l = a::;)(i) — g(xgl), e ,xEN)), 1=1,...,n.

co+c1x

Now, approximate z;’s with points Z;’s in R and g with polynomials § over R sufficiently closely.

Do the same for other j’s and 7’s. Then, the similar system of linear equations with approximal

coeflicients has a solution ¢, k = 0,1,...,n — 1 in R. Construct polynomials S = {ﬁ, e ,fM} over
R via ¢p’s and ¢’s, then 0= {Z1,...,T,} is a m-periodic orbit in RY with respect to S. O
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