Seoul National University 2024 Spring Research Internship Local–Global Principle

Younghun Jo

Department: Mathematical Sciences

March 22, 2024

Contents

1	Notations and Terminologies	1
2	Elementary Properties of Periodic Orbits	1
3	Local-Global Principle	2
4	Periodic Orbits in Completion	4
R	eferences	5

In this article, we prove the multiple map analogue of the local-global principle [2, Theorem 3.2] for periodic orbits of polynomial maps. Indeed, the proof is essentially the same with the single map case.

1 Notations and Terminologies

Let R be a commutative ring with unity of characteristic zero, and N be a positive integer. For a collection of endomorphisms $S \subseteq \text{End}(R^N)$, generating a monoid $\langle S \rangle$ under composition, we say that a point $x \in R^N$ is *S*-periodic if its *S*-orbit $\mathcal{O}_S(x) = \{f(x) : f \in \langle S \rangle\}$ is a finite set and $\langle S \rangle$ acts on $\mathcal{O}_S(x)$ by permutations.

We identify a positive integer with the corresponding cardinal number. Let n be a positive integer, κ be a cardinal number, and $\pi : \kappa \to \operatorname{Sym}(n)$ be a set map, where $\operatorname{Sym}(n)$ is the symmetric group over the set n. Note that π naturally defines a left action of the free monoid κ^* with κ generators on n. Suppose that this action is transitive. For a collection $S = \{f_j\}_{j \in \kappa} \subseteq \operatorname{End}(\mathbb{R}^N)$ consisting of κ endomorphisms that are not necessarily distinct, we call an S-periodic orbit \mathcal{O} is π -periodic if the action of $\langle S \rangle$ on \mathcal{O} is given by π , that is, for $\mathcal{O} = \{x_1, \ldots, x_n\}$, we have $f_j(x_i) = x_{\pi_j(i)}$. We call π the type of the periodic orbit.

Denote by Type (R, N, κ) the collection of all possible types of periodic orbit given κ polynomial maps in N variables with coefficients in R. More precisely, an element of Type (R, N, κ) is a tuple $(n, \pi : \kappa \to \text{Sym}(n))$ so that there exists a periodic orbit on R^N of type π . Similarly, denote by Type(R, N) the collection of all possible types of periodic orbit in N variables with coefficients in R, that is,

$$\operatorname{Type}(R,N) = \bigcup \operatorname{Type}(R,N,\kappa).$$

We will prove the following local-global principle.

Theorem 1.1 (The local-global principle). Let R be a Dedekind domain. For all positive integer $N \geq 2$ and cardinal number κ , we have

$$\operatorname{Type}(R, N, \kappa) = \bigcap_{\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}} \operatorname{Type}(R_{\mathfrak{p}}, N, \kappa) = \bigcap_{\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}} \operatorname{Type}(\widehat{R}_{\mathfrak{p}}, N, \kappa)$$

and

$$\operatorname{Type}(R, N) = \bigcap_{\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}} \operatorname{Type}(R_{\mathfrak{p}}, N) = \bigcap_{\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}} \operatorname{Type}(\widehat{R}_{\mathfrak{p}}, N).$$

Note that [2, Theorem 3.2] is the M = 1 case of this theorem.

2 Elementary Properties of Periodic Orbits

Lemma 2.1. Let R be a commutative ring with unity of characteristic zero, and N be a positive integer, and κ be a cardinal number. Let $\mathcal{O} = \{x_1, \ldots, x_n\}$ be a periodic orbit on R^N of type $\pi : \kappa \to \text{Sym}(n)$.

- (a) Let $\sigma \in AGL_N(R)$ be an invertible affine transformation, that is, $\sigma(x) = Ax + b$ for some $A \in GL_N(R)$ and $b \in R^N$. Then, $\sigma(\mathcal{O})$ is also a periodic orbit of type π .
- (b) There exists a periodic orbit of type π whose coordinates of the points are pairwise distinct.

Proof. (a) Suppose that \mathcal{O} is π -periodic with respect to the collection $S \subseteq \operatorname{End}(\mathbb{R}^N)$ of endomorphisms. Then, the set $\sigma(\mathcal{O})$ is π -periodic with respect to

$$S^{\sigma} = \{ f^{\sigma} = \sigma \circ f \circ \sigma^{-1} : f \in S \}.$$

(b) We can achieve this by applying a suitable $\sigma \in AGL_N(R)$ to \mathcal{O} . See [2, Lemma 4.1(v)].

3 Local-Global Principle

Theorem 3.1 (The local-global principle). Let R be a Dedekind domain. For all positive integer $N \geq 2$ and cardinal number κ , we have

$$\operatorname{Type}(R, N, \kappa) = \bigcap_{\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}} \operatorname{Type}(R_{\mathfrak{p}}, N, \kappa) = \bigcap_{\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}} \operatorname{Type}(\widehat{R}_{\mathfrak{p}}, N, \kappa).$$

Proof. Clearly,

$$\operatorname{Type}(R, N, \kappa) \subseteq \operatorname{Type}(R_{\mathfrak{p}}, N, \kappa) \subseteq \operatorname{Type}(\widehat{R}_{\mathfrak{p}}, N, \kappa)$$

for all $\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}$.

Suppose that $(n, \pi) \in \operatorname{Type}(\widehat{R}_{\mathfrak{p}}, N, \kappa)$ for all $\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}$. For each $\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}$ with $\#(R/\mathfrak{p}) < n$, let $\mathcal{O}_{\mathfrak{p}} = \{x_{\mathfrak{p},1}, \ldots, x_{\mathfrak{p},n}\}$ be a π -periodic orbit in $\widehat{R}_{\mathfrak{p}}^N$ with respect to the collection $S_{\mathfrak{p}} = \{f_{\mathfrak{p},j}\}_{j \in \kappa}$ of polynomial maps over $\widehat{R}_{\mathfrak{p}}$. By Lemma 2.1, we may assume that $x_{\mathfrak{p},i_1}^{(r_1)} \neq x_{\mathfrak{p},i_2}^{(r_2)}$ whenever $(i_1, r_1) \neq (i_2, r_2)$ for each \mathfrak{p} .

For each $\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}$, let $\operatorname{ord}_{\mathfrak{p}} : \widehat{R}_{\mathfrak{p}} \to \mathbb{Z} \cup \{\infty\}$ be the surjective discrete valuation of $\widehat{R}_{\mathfrak{p}}$. Pick $M \in R$ so that M satisfies:

(i) For each $\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}$ with $\#(R/\mathfrak{p}) < n$, we have

$$\operatorname{ord}_{\mathfrak{p}}(M) > \operatorname{ord}_{\mathfrak{p}}\left(\prod_{(i_1, r_1) \neq (i_2, r_2)} (x_{\mathfrak{p}, i_1}^{(r_1)} - x_{\mathfrak{p}, i_2}^{(r_2)})\right).$$

(ii) For each $\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}$ with $\#(R/\mathfrak{p}) \ge n$, we have $\operatorname{ord}_{\mathfrak{p}}(M) = 0$.

Then we construct a nice approximation of $x_{p,i}$'s in R. Pick $x_i^{(r)} \in R$, i = 1, ..., n and r = 1, ..., N satisfying:

(i) For each $\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}$ with $\#(R/\mathfrak{p}) < n$, we have

$$\operatorname{ord}_{\mathfrak{p}}(x_{\mathfrak{p},i}^{(r)}-x_i^{(r)}) \ge n \operatorname{ord}_{\mathfrak{p}}(M).$$

(ii) For each $\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}$ with $\#(R/\mathfrak{p}) \ge n$, we have

$$\min\left\{\operatorname{ord}_{\mathfrak{p}}\left(\prod_{i_1\neq i_2} (x_{i_1}^{(1)} - x_{i_2}^{(1)})\right), \operatorname{ord}_{\mathfrak{p}}\left(\prod_{i_1\neq i_2} (x_{i_1}^{(2)} - x_{i_2}^{(2)})\right)\right\} = 0.$$

First, we pick $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^N$ satisfying (i). Then, we pick $a_1, \ldots, a_n \in \mathbb{R}$ so that the points

$$x_i = (\widetilde{x}_i^{(1)} + a_1 M^n, \widetilde{x}_i^{(2)}, \dots, \widetilde{x}_i^{(N)})$$

satisfy both (i) and (ii). Note that there are only finitely many primes $\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}$ with $\#(R/\mathfrak{p}) \ge n$ such that

$$\operatorname{ord}_{\mathfrak{p}}\left(\prod_{i_1\neq i_2} (x_{i_1}^{(2)} - x_{i_2}^{(2)})\right) > 0.$$

For such \mathfrak{p} , since $\#(R/\mathfrak{p}) \ge n$ and $\operatorname{ord}_{\mathfrak{p}}(M) = 0$, we may pick $a_1, \ldots, a_n \pmod{\mathfrak{p}}$ so that $x_1^{(1)}, \ldots, x_n^{(1)}$ (mod \mathfrak{p}) are pairwise distinct. Hence, we can always pick suitable $a_1, \ldots, a_n \in R$.

Now, we construct a collection $S = \{f_j\}_{j \in \kappa}$ of polynomial maps over R so that $\mathcal{O} = \{x_1, \ldots, x_n\}$ is π -periodic with respect to S, that is, $f_j(x_i) = x_{\pi_j(i)}$ for each i, j. Let $\tilde{f}_j, j \in \kappa$ be polynomials over R in N variables satisfying $\tilde{f}_j \equiv f_{\mathfrak{p},j} \pmod{M^n}$ for all $\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}$ with $\#(R/\mathfrak{p}) < n$. Fix $j \in \kappa$ and $r \in \{1, \ldots, N\}$. We will put

$$f_j^{(r)}(X_1, \dots, X_N) = \tilde{f}_j^{(r)}(X_1, \dots, X_N) + \sum_{k=0}^{n-1} M^{n-k} \left[b_k \prod_{v=1}^k (X_1 - x_v^{(1)}) + B_k \prod_{v=1}^k (X_2 - x_v^{(2)}) \right]$$

for suitable $b_k, B_k \in R$ so that

$$x_{\pi_{j}(i)}^{(r)} = \tilde{f}_{j}^{(r)}(x_{i}) + \sum_{k=1}^{i} M^{n-k} \left[b_{k} \prod_{v=1}^{k-1} (x_{i}^{(1)} - x_{v}^{(1)}) + B_{k} \prod_{v=1}^{k-1} (x_{i}^{(2)} - x_{v}^{(2)}) \right]$$
(1)

for all $i = 1, \ldots, n$.

We inductively choose coefficients $b_k, B_k \in \mathbb{R}, k = 1, ..., n$. Note that the equation (1) only depends on the coefficients b_k 's and B_k 's with $k \leq i$. Assume that the coefficients $b_1, ..., b_{l-1}$ and $B_1, ..., B_{l-1}$ are chosen so that the equation (1) holds for i = 1, ..., l-1. We will choose b_l and B_l so that (1) also holds for i = l, that is,

$$x_{\pi_{j}(l)}^{(r)} = \tilde{f}_{j}^{(r)}(x_{l}) + \sum_{k=1}^{l} M^{n-k} \left[b_{k} \prod_{v=1}^{k-1} (x_{l}^{(1)} - x_{v}^{(1)}) + B_{k} \prod_{v=1}^{k-1} (x_{l}^{(2)} - x_{v}^{(2)}) \right].$$
(2)

The above equation reduces to the linear equation

$$A_1b_l + A_2B_l = A$$

where

$$A_{1} = M^{n-l} \prod_{v=1}^{l-1} (x_{l}^{(1)} - x_{v}^{(1)}),$$

$$A_{2} = M^{n-l} \prod_{v=1}^{l-1} (x_{l}^{(2)} - x_{v}^{(2)}),$$

$$A = x_{\pi_{j}(l)}^{(r)} - \hat{f}_{j}^{(r)}(x_{l})$$

$$- \sum_{k=1}^{l-1} M^{n-k} \left[b_{k} \prod_{v=1}^{k-1} (x_{l}^{(1)} - x_{v}^{(1)}) + B_{k} \prod_{v=1}^{k-1} (x_{l}^{(2)} - x_{v}^{(2)}) \right].$$

Hence, it sufficies to show that

$$gcd(A_1, A_2) \mid A,$$

or equivalently,

$$\operatorname{ord}_{\mathfrak{p}}(A) \ge \min\{\operatorname{ord}_{\mathfrak{p}}(A_1), \operatorname{ord}_{\mathfrak{p}}(A_2)\}$$

for all $\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}$. If $\#(R/\mathfrak{p}) \ge n$, then by our construction of M and $x_i^{(r)}$'s, we have

$$\min\{\operatorname{ord}_{\mathfrak{p}}(A_{1}), \operatorname{ord}_{\mathfrak{p}}(A_{2})\} = \operatorname{ord}_{\mathfrak{p}}(M^{n-l}) \min\left\{\operatorname{ord}_{\mathfrak{p}}\left(\prod_{v=1}^{k-1} (x_{l}^{(1)} - x_{v}^{(1)})\right), \operatorname{ord}_{\mathfrak{p}}\left(\prod_{v=1}^{k-1} (x_{l}^{(2)} - x_{v}^{(2)})\right)\right\}$$
$$= 0.$$

If $\#(R/\mathfrak{p}) < n$, then $\operatorname{ord}_{\mathfrak{p}}(A) \ge (n-l+1) \operatorname{ord}_{\mathfrak{p}}(M)$, so we will prove that $\operatorname{ord}_{\mathfrak{p}}(A_s) \le (n-l+1) \operatorname{ord}_{\mathfrak{p}}(M)$ for s = 1, 2, or equivalently,

$$\operatorname{ord}_{\mathfrak{p}}\left(\prod_{v=1}^{k-1} (x_l^{(s)} - x_v^{(s)})\right) \leq \operatorname{ord}_{\mathfrak{p}}(M)$$

for s = 1, 2. This holds since

$$x_l^{(s)} - x_v^{(s)} \equiv x_{\mathfrak{p},l}^{(s)} - x_{\mathfrak{p},v}^{(s)} \pmod{\mathfrak{p}^{\mathrm{ord}_{\mathfrak{p}}(M)+1}\widehat{R}_{\mathfrak{p}}},$$

and

$$\operatorname{ord}_{\mathfrak{p}}\left(\prod_{v=1}^{k-1} (x_{\mathfrak{p},l}^{(s)} - x_{\mathfrak{p},v}^{(s)})\right) \le \operatorname{ord}_{\mathfrak{p}}(M)$$

by construction of M.

Corollary 3.1.1. Let R be a Dedekind domain. For all positive integer $N \ge 2$, we have

$$\operatorname{Type}(R,N) = \bigcap_{\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}} \operatorname{Type}(R_{\mathfrak{p}},N) = \bigcap_{\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}} \operatorname{Type}(\widehat{R}_{\mathfrak{p}},N).$$

Proof. Clearly,

$$\operatorname{Type}(R,N) \subseteq \bigcap_{\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}} \operatorname{Type}(R_{\mathfrak{p}},N) \subseteq \bigcap_{\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}} \operatorname{Type}(\widehat{R}_{\mathfrak{p}},N).$$

Suppose that for each $\mathfrak{p} \in \operatorname{Spec} R \setminus \{0\}$, we have $n \in \operatorname{Type}(\widehat{R}_{\mathfrak{p}}, N, \kappa_{\mathfrak{p}})$ for some cardinal number $\kappa_{\mathfrak{p}}$. Let κ be the supremum of all $\kappa_{\mathfrak{p}}$'s. Then we also have $n \in \operatorname{Type}(\widehat{R}_{\mathfrak{p}}, N, \kappa)$ since we may add any number of redundant polynomial maps. Hence, $n \in \operatorname{Type}(R, N, \kappa)$, so $n \in \operatorname{Type}(R, N)$.

4 Periodic Orbits in Completion

Moreover, when κ is a positive integer, we can show the following result.

Proposition 4.1. Let R be a discrete valuation ring with a valuation v, and \hat{R} be its completion with respect to v. Then, for all positive integers N and M, we have

$$\operatorname{Type}(R, N, M) = \operatorname{Type}(\widehat{R}, N, M).$$

Proof. Clearly, Type $(R, N, M) \subseteq$ Type (\hat{R}, N, M) . To show the opposite inclusion, let $\mathcal{O} = \{x_1, \ldots, x_n\}$ be a π -periodic orbit in \hat{R}^N for polynomial maps over \hat{R} in $S = \{f_1, \ldots, f_M\}$. By Lemma 2.1, we may assume that the coordinates of x_i 's are pairwise distinct.

Fix $j \in \{1, \ldots, M\}$ and $r \in \{1, \ldots, N\}$. Put $f_j = (f_j^{(1)}, \ldots, f_j^{(N)})$, and write

 $f_j^{(r)}(X_1,\ldots,X_N) = c_0 + c_1 X_1 + \cdots + c_{n-1} X_1^{n-1} + g(X_1,\ldots,X_N)$

with $c_k \in \widehat{R}$, $g \in \widehat{R}[X_1, \ldots, X_N]$. Note that the numbers c_k , $k = 0, 1, \ldots, n-1$ satisfy the system of n linear equations

$$c_0 + c_1 x_i^{(1)} + \dots + c_{n-1} (x_i^{(1)})^{n-1} = x_{\pi_j(i)}^{(r)} - g(x_i^{(1)}, \dots, x_i^{(N)}), \quad i = 1, \dots, n.$$

Now, approximate x_i 's with points \tilde{x}_i 's in \mathbb{R}^N and g with polynomials \tilde{g} over \mathbb{R} sufficiently closely. Do the same for other j's and r's. Then, the similar system of linear equations with approximal coefficients has a solution \tilde{c}_k , $k = 0, 1, \ldots, n-1$ in \mathbb{R} . Construct polynomials $\tilde{S} = \{\tilde{f}_1, \ldots, \tilde{f}_M\}$ over \mathbb{R} via \tilde{c}_k 's and \tilde{g} 's, then $\tilde{O} = \{\tilde{x}_1, \ldots, \tilde{x}_n\}$ is a π -periodic orbit in \mathbb{R}^N with respect to \tilde{S} . \Box

References

- [1] Hartshorne, R. (1977). Algebraic geometry. Springer.
- [2] Pezda, T. (2003). Cycles of polynomial mappings in several variables over rings of integers in finite extensions of the rationals. Acta Arithmetica, 108, 127–146.
- [3] Silverman, J. H. (2007). The arithmetic of dynamical systems. Springer.