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Hilbert’s Third Problem Dehn Invariant Tiling a Polygon with Similar Polygons

Today’s Goals

Hilbert’s Third Problem

부피가 같은 두 다면체가 있을 때, 하나를 유한 조각으로 쪼개어 다른 하나를

만들 수 있는가?

Tiling Square with Similar Rectangles

닮음인 직사각형들로 정사각형을 채울 수 있는 직사각형의 가로/세로 비율은

무엇인가?

Tiling Square with Similar Triangles

세 내각이 30◦, 60◦, 90◦인 직각삼각형들로 정사각형을 채울 수 있는가?
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Euclidean Geometry

V =
1

3
Sh

: The proof involves limiting process. (e.g. Cavalieri’s Principle)

→ Is there a way to define “Area(or, Volume)” elementarily?
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Scissors Congruence

Polytopal Decomposition

A polytopal decomposition of a n-dimensional polytope P is a finite collections of

polytopes P1, . . . , Pn whose union is P and which pairwise intersect only in their

boundaries.

Scissors Congruence

n-dimensional polytopes P and Q are scissors congruent if there exists polytopal

decomposition P1 . . . , Pn and Q1, . . . , Qn of P and Q, respectively, such that Pi

is congruent to Qi for 1 ≤ i ≤ n. We will write P ∼sc Q.

Note. Scissors congruence is an equivalence relation.
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Scissors Congruence

Motivation. Can we define “Area” via scissors congrunce?

... However, in order to come down to earth again from this height,

it is a shame that the equality of the volumes of physical, merely

symmetrical, but not congruent structures can only be demonstrated

by the exhaustion method and not as elementarily as I know first you

showed at the area of the sphirical triangle.

- Carl Friedrich Gauss, April 8, 1844.
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In R2......

Theorem (Wallace-Bolyai-Gerwien; 1807)

Two polygons are scissors congruent iff they have the same area.
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Hilbert’s Third Problem

Hilbert’s Third Problem
Given any two polyhedra of equal volume, is it always possible to cut the first into

finitely many polyhedral pieces that can be reassembled to yield the second?

i.e. Are any two polyhedra of equal volume always scissors congruent?

Remarks.

It is one of Hilbert’s 23 problems, presented in 1900.

Max Dehn (1878-1952) proved that the answer is “no” by producing a

counterexample.
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Cauchy’s Functional Equation

Cauchy’s Functional Equation

Cauchy’s functional equation is the functional equation:

f(x+ y) = f(x) + f(y).

Solutions of this equation are called additive.

f(x) = cx is a solution of CFE for c ∈ R.

We can easily show that f(qx) = qf(x) for all q ∈ Q.
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Hamel Basis

Axiom (Axiom of Choice)

For any set X of nonempty sets, there exists a choice function f defined on X.

Theorem
Every vector space has a basis.

Corollary (Hamel Basis)

There exists a basis H = {hα}α∈I of R considered as a Q-vector space, i.e., for

all β ∈ R, there exists a unique representation of the form

β =

n∑
i=1

qihαi

where qi ∈ Q and n depends on β. We call such H a Hamel basis.
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Nonlinear Additive Solution

Pick a Hamel basis H = {hα}α∈I .

For each x =

n∑
i=1

qihαi
, we have f(x) =

n∑
i=1

qif(hαi
).

∴ Choose each f(hα) arbitarily, then the resulting function f is a solution of

Cauchy’s functional equation.

Note. We may choose some finitely many elements of H arbitarily (if they are

linearly independent).

E.g. There exists additive f with f(1) = 1, f(
√
2) = 0 and f(π) = −1.
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Dehn Invariant

Dehn Invariant is an invariant preserved under the scissors congruence.

Idea. “Merging the edges” of polyhedra.

The conditions of Dehn invariant we expect:

Two edges of same length can be “attached side-to-side,” so that their

angles are added together.

Two edges of same angle can be “attached end-to-end,” so that their lengths

are added together.

An edge of angle π is no edge at all, so it counts as 0.

It must be nontrivial enough to produce a counterexample.
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Dehn Invariant

Dehn Invariant
Let H be a Hamel basis containing π, and f be an additive function induced from

H, with f(π) = 0. For an edge e of a polytope P , denote its length by `(e) and

its angle by θ(e). Then, we define the Dehn invariant of P by

D(P ) =
∑
e: edge

`(e) · f(θ(e)).

Note. There is an equivalent formulation of Dehn invariant:

D(P ) =
∑
e: edge

`(e)⊗ (θ(e) + πQ).

We can easily check that it is invariant under scissors congruence.
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Disproof of Hilbert’s Third Problem (Hadwiger; 1950’s)

Lemma

arccos 1
3 6∈ πQ.

Proof.

Denote Tn by the Chebyshev polynomial, defined by Tn(cos θ) = cos(nθ).

Assume that arccos 1
3 ∈ πQ, say arccos 1

3 = m
n π.

Substituting θ = arccos 1
3 , we have Tn(

1
3 ) = cos(mπ) = ±1.

From the identity Tn+1 = 2xTn − Tn−1, we can show that the leading coefficient

of Tn is 2n−1.

Hence, ±3n = 3nTn(
1
3 ) = 2n−1 + (multiple of 3), a condtradiction.
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Disproof of Hilbert’s Third Problem (Hadwiger; 1950’s)

Property (Counterexample of Hilbert’s Third Problem)

The cube and the regular tetrahedron of equal volume are not scissors congruent.

Proof.

Let H be a Hamel basis containing π and arccos 1
3 , and f be an additive function

induced from H, with f(π) = 0 and f(arccos 1
3 ) = 1. Construct a Dehn invariant

D using f . Then we have

D(cube) =
∑
e

`(e)f(
π

2
) = 0 6=

∑
e

`(e)f(arccos
1

3
) = D(tetrahedron),

hence the cube and the regular tetrahedron are not scissors congruent.

Note. We may remove AoC from this proof by fixing a polytopal decomposition.
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Converse of Dehn Invariant Condition

Q. Then, which polyhedrons are scissors congruent?

Theorem (Sydler; 1965)

Two polyhedron of equal volumes are scissors congruent iff they have the same

Dehn invariant.
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Notation

Q[x1, . . . , xn]: The polynomial ring on n indeterminates x1, . . . , xn with

coefficients in Q.

Q(x1, . . . , xn): The rational function field on n indeterminates x1, . . . , xn

over Q, i.e., the field of fractions of Q[x1, . . . , xn].
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Tiling a Rectangle with Squares

Eccentricity of a Rectangle

For a rectangle R with base b and height h, define the eccentricity of R by r = h
b .

Theorem (Dehn)

A rectangle can be tiled using finitely many squares if and only if its eccentricity is

a rational number.

The ‘if’ side is trivial, but how can we prove the ‘only if’ side?

h

b
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Tiling a Rectangle with Squares

Proof.

Suppose that the eccentricity r = h
b of R is irrational.

Then h and b are linearly independent over Q.

Let H be an additive function with f(b) = 1 and f(h) = −1, and define the

Hamel area of any x× y rectangle by f(x)f(y), then it is additive.

Then the Hamel area of R is f(b)f(h) = −1 < 0, but the Hamel area of a square

is f(x)2 ≥ 0, hence there is no partition of R into squares.

Note. We may choose xf(y)− yf(x) as the Hamel area function.
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Tiling a Rectangle with Rectangles

Theorem (Dehn-Freiling-Rinne)

Let R1, . . . , Rn be a rectangular partition of rectangle R0, and ri =
hi

bi
be the

eccentricity of Ri. Then, r0 ∈ Q(r1, . . . , rn).

Especially, r0 = P (r1,...,rn)
Q(r1,...,rn)

for some P,Q ∈ Q[r1, . . . , rn] where all terms of P are

of the same degree, all terms of Q of the same degree, and degP = degQ+ 1.
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Tiling a Rectangle with Rectangles

Step 1: r0 ∈ Q(r1, . . . , rn)

Proof.

Denote the field F = Q(r1, . . . , rn) ≤ R, and consider R as a F -vector space.

If r0 6∈ F , then h0 and b0 are linearly independent over F . Let f1 and f2 be the

additive function which indicates the h0(and b0, resp.)-coefficient.

For each b× h rectangle, define its Hamel area by f1(b)f2(h)− f1(h)f2(b).
Then the Hamel area of R0 is f1(b0)f2(h0)− f1(h0)f2(b0) = 1 · 1− 0 · 0 = 1,

while the Hamel area of Ri is f1(bi)f2(hi)− f1(hi)f2(bi) =
f1(bi)f2(ribi)− f1(ribi)f2(bi) = ri[f1(bi)f2(bi)− f1(bi)f2(bi)] = 0.

Since the Hamel area is additive, that gives a contradiction.
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Tiling a Rectangle with Rectangles

Step 2: r0 = P (r1,...,rn)
Q(r1,...,rn)

where P,Q have the desired property.

Proof Sketch.

Let r0 = P (r1,...,rn)
Q(r1,...,rn)

, and take η be a trancendental number over F .

Stretch the vertical axis by η times, we have ηr0 = P1(ηr1,...,ηrn)
Q1(ηr1,...,ηrn)

.

Hence, ηP (r1, . . . , rn)Q1(ηr1, . . . , ηrn) = P1(ηr1, . . . , ηrn)Q(r1, . . . , rn).

Consider the both sides as polynomials of η, and compare the leading terms.
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Tiling a Square with Similar Rectangles

Corollary

If a square is partitioned by rectangles of eccentricity r, then r is algebraic.

Proof.

1 = P (r,1/r)
Q(r,1/r) where P,Q are the polynomials of the previous theorem.

Since the degree of the terms in P and Q have the opposite parity, this gives a

nontrivial polynomial with root r.
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Tiling a Square with Similar Rectangles

Totally Positive

For an algebraic number r, the conjugate roots of r are the roots of the minimal

polynomial of r. We say r is totally positive if all the conjugate roots of r have

positive real part.

Theorem (Freiling-Rinne-Laczkovich-Szekeres)

A square can be partitioned using rectangles of eccentricity r iff r is totally

positive.
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Tiling a Square with Similar Rectangles

(⇐):

Theorem (Wall)

Let P (x) = xn + pn−1x
n−1 + · · ·+ p0 and Q(x) = pn−1x

n−1 + pn−3x
n−3 + . . .

be the alternant of P (x). All roots of P (x) have positive real part iff

Q(x)

P (x)−Q(x)
=

− 1

cnx+ 1
cn−1x+

1

···+ 1
c1x

.

Let P (x) be the minimal polynomial of r, then P (r) = 0, hence Q(r)
P (r)−Q(r) = −1.

Put P (r) in the Wall’s Theorem, then we can inductively construct the partition

of rectangles with eccenticity 1
ckr+

1

ck−1r+ 1
···+ 1

c1r

.
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Tiling a Square with Similar Rectangles

(⇒):

Assume that r is algebraic of degree n while not totally positive.

Denote the minimal polynomial of r by p(x) ∈ Q[x].

Lemma

Let r > 0 be algebraic with minimal polynomial p(x), then r is totally positive or

p has a root with strictly negative real part.

Lemma

If p(x) ∈ Q[x] is irriducible, then p has distinct roots.

Hence, p(x) has n distinct roots, and it has a root with strictly negative real part.
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Tiling a Square with Similar Rectangles

We construct the Hamel area via a quadratic form.

Since Q[r] forms a field, consider R as a Q[r]-vector space.

Let H be a Hamel basis of R containing 1, and denote px(r) =
∑n−1
i=0 air

i ∈ Q[r]

by the 1-coefficient of x. Write [x] = (a0, . . . , an−1)
T .

Note that for all symmetric n× n matrix M , [b]TM [h] is an additive Hamel area

for a b× h rectangle.

Consider the companion matrix Q of p(x) whose eigenvalues are the roots of p(x).

Then we have [rx] = Q[x] for all x ∈ R.
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Tiling a Square with Similar Rectangles

First, assume that all eigenvalues of Q are real. Since all eigenvalues of Q are

distinct, we can consider a diagonalization P−1QP = D.

Choose M = (P−1)TDP−1, then the Hamel area of a rectangle of eccentricity r

is [b]TM [rb] = [b]TMQ[b] = [b]T (P−1)TD2P−1[b] = vTD2v ≥ 0.

WLOG, assume that the first entry λ1 in D is negative.

Then (Pe1)
TM(Pe1) = λ1 < 0. Hence, take s ∈ R with [s] sufficiently close to

Pe1, so that [s]TM [s] < λ1

2 < 0.

Since the Hamel area of s× s square is negative, it cannot be partitioned into

rectangles of eccenticity r. Thus, no square can be so partitioned.

The general case can be solved, with the similar argument along the 2× 2 block

diagonalization.
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Tiling a Square with Similar Triangles

In the problem of tiling a square with right triangles, we get an analogous result.

Theorem (Laczkovich-Szegedy)

A square can be partitioned into right triangle with an acute angle α iff tanα is

totally positive algebraic number.

If we omit the right angle condition, then there are 3 sporadic cases.

Theorem (Laczkovich)

If a square can be partitioned into triangles that are similar with 4, then 4 is a

right triangle or the angles of 4 are (π/8, π/4, 5π/8) or (π/4, π/3, 5π/12) or

(π/12, π/4, 2π/3).
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Tiling a Square with Similar Triangles

We will sketch the proof of the following partial proposition.

Proposition

A square cannot be partitioned into triangles with angles 30◦, 60◦ and 90◦.
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Tiling a Square with Similar Triangles

Theorem
Suppose that a polygon P is partitioned into triangles 41, . . . ,4N . Then the

coordinates of the vertices of each 4j belong to the field generated by the

coordinates of the vertices of P and the cotangents of the angles of the triangles.

Note. Such field contains the slopes of the sides of triangles.
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Tiling a Square with Similar Triangles

Theorem

Let P be a polygon with vertices Vi = (ai, bi). Suppose that P is partitioned into

triangles 41, . . . ,4N and denote the angles of 4j by αj , βj , γj . Denote F by the

field generated by ai, bi, cotαj , cotβj , cot γj .

If φ : F → R is an isomorphism into its image which leaves ai, bi fixed, then there

is a j such that at least two of the numbers φ(cotαj), φ(cotβj), φ(cot γj) are

positive.
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Tiling a Square with Similar Triangles

Proof.

Shift the coordinates of 4j via φ, and denote the resulting triangle by 4′j .
Give the counter-clockwise orientation to each ∂P and ∂4j , and the

corresponding orientation to each 4′j , then ∂P =
∑
j ∂4j =

∑
j ∂4′j .

Consider the signed area A =
∫
∂P

xdy and Aj =
∫
∂4′j

xdy, then A =
∑
j Aj .

Hence, at least one 4′j must be oriented counter-clockwise.

Denote the angles of 4′j by α′j , β
′
j , γ
′
j , then with some calculation, we have

cotα′ = φ(cotα) and analogous equations.

At least two of the angles α′j , β
′
j , γ
′
j are acute, hence at least two of

φ(cotα′j), φ(cotβj), φ(cot γj) are positive.
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Tiling a Square with Similar Triangles

Proposition

A square cannot be partitioned into triangles with angles 30◦, 60◦ and 90◦.

Proof.

Suppose that the unit square has such decomposition.

Since cot 30◦ =
√
3 and cot 60◦ =

√
3/3, apply the previous theorem on Q(

√
3).

Let φ be the automorphism of Q(
√
3) with φ(

√
3) = −

√
3, then φ maps cot 30◦

and cot 60◦ to negative numbers, a contradiction.
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