Primes of the form $x^2 + ny^2$ – Primes, Quadratic Forms, and Hilbert Class Field Theory

수리과학부 19학번 조영훈

2023 Winter Math Seminar March 1, 2023

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Overview

Introduction

Quadratic Form

- Quadratic Form and Quadratic Residue
- Genus Theory
- Composition and Class Group
- 3 Cubic and Quartic Reciprocity
 - $\mathbb{Z}[\omega]$ and Cubic Reciprocity
 - $\mathbb{Z}[i]$ and Quartic Reciprocity
- 4 Hilbert Class Field Theory
 - Number Fields
 - Quadratic Number Fields
 - Hilbert Class Field Theory

ELE DOG

*ロト *個ト * ヨト * ヨ

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Fermat's Marginal Notes

Every prime number which surpasses by one a multiple of four is composed of two squares. $(p \equiv 1 \pmod{4}) \implies p = x^2 + y^2)$ Every prime number which surpasses by one or three a multiple of eight is composed of a square and the double of another square. $(p \equiv 1, 3 \pmod{8} \implies p = x^2 + 2y^2)$ Every prime number which surpasses by one a multiple of three is

composed of a square and the triple of another square.

 $(p \equiv 1 \pmod{3} \implies p = x^2 + 3y^2)$

- Pierre de Fermat, 1658.

... But where are the proofs?

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Euler's Two-Step Strategy

Fermat's 4k + 1 Theorem

An odd prime p can be written as $x^2 + y^2$ if and only if $p \equiv 1 \pmod{4}$.

Proof. (\Rightarrow) is obvious. We prove (\Leftarrow) part.

- Reciprocity Step: $p \equiv 1 \pmod{4} \implies p \mid a^2 + b^2$, gcd(a, b) = 1.
- Descent Step: $p \mid a^2 + b^2$, $gcd(a, b) = 1 \implies p = x^2 + y^2$.

<ロ> <四> <回> <三> <三> <三> <三> <三</p>

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

The Reciprocity Step

• Reciprocity Step: $p \equiv 1 \pmod{4} \implies p \mid a^2 + b^2$, gcd(a, b) = 1.

In modern language, it is essentially

$$p \equiv 1 \pmod{4} \implies \left(\frac{-1}{p}\right) = 1,$$

and it is easy to show:

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = 1.$$

<ロ> <四> <回> <三> <三> <三> <三> <三</p>

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

The Method of Infinite Descent

• Descent Step: $p \mid a^2 + b^2$, $gcd(a, b) = 1 \implies p = x^2 + y^2$.

We begin with the classical identity

$$(x^2 + y^2)(z^2 + w^2) = (xz \pm yw)^2 + (xw \mp yz)^2.$$

Lemma

$$q = x^2 + y^2 \mid N = a^2 + b^2$$
, $gcd(a, b) = 1$, then $N/q = c^2 + d^2$.

WLOG, assume that $|a|, |b| < \frac{p}{2}$. Then, all prime divisors $q \neq p$ of $N = a^2 + b^2$ are less than p. If all such q's were $x^2 + y^2$, then we are done by the above Lemma. Otherwise, apply the method of infinite descent.

(Analogous proofs can be applied to the cases n = 2, 3.), and n = 2, 3.

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Primes of the Form $x^2 + ny^2$

The $x^2 + ny^2$ Problem

Given $n \in \mathbb{N}$, a prime p can be written as $x^2 + ny^2$ if and only if ...

What can be the analogous of Reciprocity Step and Descent Step?

<ロ> <四> <回> <三> <三> <三> <三> <三</p>

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Theory of Quadratic Residues

Reciprocity Step is quite accessible:

$$p \mid a^2 + nb^2$$
, $gcd(a, b) = 1 \iff \left(\frac{-n}{p}\right) = 1$.

Given N, how can we determine if
$$\left(\frac{N}{p}\right) = 1$$
?

•
$$(-3/p) = 1 \iff p \equiv 1,7 \pmod{12}$$

•
$$(5/p) = 1 \iff p \equiv \pm 1, \pm 11 \pmod{20}$$

•
$$(6/p) = 1 \iff p \equiv \pm 1, \pm 5 \pmod{24}$$

Guess. $(N/p) = 1 \iff p \equiv \alpha \pmod{4N}$ for certain α 's?

<ロ> <四> <回> <三> <三> <三> <三> <三</p>

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Theory of Quadratic Residues

Theorem

 $D \equiv 0, 1 \pmod{4}$ is a nonzero integer. Then there is a unique homomorphism $\chi : (\mathbb{Z}/D\mathbb{Z})^{\times} \to \{\pm 1\}$ such that $\chi([p]) = (D/p)$ for odd primes $p \nmid D$.

Corollary

Let D = -4n, then

$$\left(\frac{-n}{p}\right) = 1 \iff [p] \in \ker \chi \subset (\mathbb{Z}/D\mathbb{Z})^{\times}.$$

Quadratic Form

Cubic and Quartic Reciprocity 000000000000 Hilbert Class Field Theory

Theory of Quadratic Residues

Its proof heavily relies on the quadratic reciprocity:

Quadratic Reciprocity for Jacobi Symbols

•
$$(-1/m) = (-1)^{(m-1)/2}$$

•
$$(2/m) = (-1)^{(m^2-1)/8}$$

•
$$(M/m) = (-1)^{(M-1)(m-1)/4} (m/M)$$

Corollary

If $m \equiv n \pmod{D}$ are positive odds, $D \equiv 0, 1 \pmod{4}$, then (D/m) = (D/n).

Hence, $\chi([p]) = (D/p)$ for odd primes $p \nmid D$ gives a well-defined homomorphism $\chi : (\mathbb{Z}/D\mathbb{Z})^{\times} \to \{\pm 1\}.$

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Failure of Descent Step

But, Descent Step seems quite complicated...

Hopefully, we still have the analogous identity

$$(x^2 + ny^2)(z^2 + nw^2) = (xz \pm nyw)^2 + n(xw \mp yz)^2.$$

Q. Possible Generalization of Descent Step

$$p \mid N = a^2 + nb^2$$
, then $p = x^2 + ny^2$?

But this fails even for n = 5:

$$3 \mid 21 = 1^2 + 5 \cdot 2^2, \qquad 3 \neq x^2 + 5y^2.$$

ELE DOG

イロト イボト イヨト イヨ

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

More Conjectures from Euler

Euler stated more conjectures on primes of the form $x^2 + ny^2$:

(1)
$$p = x^2 + 5y^2 \iff p \equiv 1,9 \pmod{20}$$

(Note that $(-5/p) = 1 \iff p \equiv 1, 3, 7, 9 \pmod{20}$.)

(2)
$$p = \begin{cases} x^2 + 14y^2 \\ 2x^2 + 7y^2 \end{cases} \iff p \equiv 1, 9, 15, 23, 25, 39 \pmod{56}$$

(Note that $(-7/p) = 1 \iff p \equiv 1, 3, 5, 9, 13, 15, 19, 23, 25, 27, 39, 45 \pmod{56}$.)

Quadratic Form

Cubic and Quartic Reciprocity

More Conjectures from Euler

(3)
$$p = x^2 + 27y^2 \iff \begin{cases} \left(\frac{-27}{p}\right) = 1, \\ 2 \text{ is a cubic residue mod } p \end{cases}$$

(4)
$$p = x^2 + 64y^2 \iff \begin{cases} \left(\frac{-64}{p}\right) = 1, \\ 2 \text{ is a quartic residue mod } p \end{cases}$$

<ロ> <四> <回> <三> <三> <三> <三> <三</p>

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Lagrange's Theory of Quadratic Forms

Q. Which integer m can be represented as $m = x^2 + ny^2$?

Definition

• An integral quadratic form

$$f(x,y) = ax^{2} + bxy + cy^{2} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \quad a,b,c \in \mathbb{Z}$$

is primitive if $\gcd(a,b,c)=1.$ (We will deal exclusively with primitive forms.)

- An integer m is represented by a form f(x,y) if m = f(x,y) for some x, y.
- Moreover, m is properly represented if such x, y are relatively prime.

Q. Given a primitive form f(x, y), which integer m is properly represented by f?

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Lagrange's Theory of Quadratic Forms

Definition

• Two forms f(x,y), g(x,y) are *equivalent* if

f(x,y) = g(px + qy, rx + sy)

for some $\begin{pmatrix} p & q \\ r & s \end{pmatrix} \in \mathrm{GL}(2,\mathbb{Z}).$

• Moreover, f(x, y), g(x, y) are properly equivalent if $\binom{p \ q}{r \ s} \in SL(2, \mathbb{Z})$, and improperly equivalent otherwise.

Note that equivalent forms (properly) represent the same numbers.

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Lagrange's Theory of Quadratic Forms

Also note that the equivalence relation preserves discriminant:

Definition

• The discriminant of a form $f(x,y) = ax^2 + bxy + cy^2$ is

disc
$$f = b^2 - 4ac = -4 \det \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix}$$

- The *(form) class group* C(D) is the collection of proper equivalence classes of the forms of discriminant D.
- The class number h(D) is the cardinality of C(D).

FACT

For every integer $D \equiv 0, 1 \pmod{4}$, h(D) is finite.

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Quadratic Form and Quadratic Residue

However, we have the following consequence:

Lemma

A form f(x, y) properly represents m if and only if f(x, y) is properly equivalent to $mx^2 + Bxy + Cy^2$ for some B, C.

Proposition

Let $D \equiv 0,1 \pmod{4}$ and m be an odd integer relatively prime to D. Then, m is properly represented by a primitive form of discriminant D if and only if D is a quadratic residue mod m.

Proof.

(
$$\Rightarrow$$
) WLOG $f(x, y) = mx^2 + bxy + cy^2$. Then, $D = b^2 - 4mc \equiv b^2 \pmod{m}$.
(\Leftarrow) $D \equiv b^2 \pmod{m}$, so WLOG $D \equiv b^2 \pmod{4m}$.
Write $D = b^2 - 4mc$, then for $f(x, y) = mx^2 + bxy + cy^2$, $m = f(1, 0)$.

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Quadratic Form and Quadratic Residue

Proposition

Let $D \equiv 0,1 \pmod{4}$ and m be an odd integer relatively prime to D. Then, m is properly represented by a primitive form of discriminant D if and only if D is a quadratic residue mod m.

Corollary

(-n/p) = 1 if and only if p is represented by a primitive form of discriminant -4n.

- Recall that we already got (-n/p) = 1 condition in **Reciprocity Step**.
- If h(-4n) = 1, then we are done!

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Quadratic Form and Quadratic Residue

- Recall that we already got (-n/p) = 1 condition in **Reciprocity Step**.
- If h(-4n) = 1, then we are done!

FACT

 $h(-4n) = 1 \iff n = 1, 2, 3, 4, 7.$

(Uniqueness problem for D > 0 is much more complicated.)

Corollary

If n = 1, 2, 3, 4, 7, then

$$p = x^2 + ny^2 \iff \left(\frac{-n}{p}\right) = 1 \iff [p] \in \ker \chi \subset (\mathbb{Z}/4n\mathbb{Z})^{\times}.$$

... We need to refine our theory further.

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

The Failure of Quadratic Residue Condition

The first failure is the case when n = 5:

$$C(-20) = \{ [x^2 + 5y^2], [2x^2 + 2xy + 3y^2] \}.$$

Also recall Euler's conjecture:

(1)
$$\begin{cases} p = x^2 + 5y^2 & \iff p \equiv 1,9 \pmod{20} \\ 2p = x^2 + 5y^2 & \iff p \equiv 3,7 \pmod{20} \end{cases}$$

However, we can observe that

$$x^2 + 5y^2$$
 represents $m \implies m \equiv 1,9 \pmod{20}$
 $2x^2 + 2xy + 3y^2$ represents $m \implies m \equiv 3,7 \pmod{20}$

ELE DOG

イロト イヨト イヨト

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Genus Theory

Definition

Given D < 0.

- Two forms of discriminant D are in the same genus if they represent the same values in $\ker \chi \subset (\mathbb{Z}/D\mathbb{Z})^{\times}$.
- The principal form of discriminant D is

$$\begin{cases} x^2 - \frac{D}{4}y^2 & \text{if } D \equiv 0 \pmod{4} \\ \left(x + \frac{y}{2}\right)^2 - \frac{D}{4}y^2 & \text{if } D \equiv 1 \pmod{4} \end{cases}$$

• Let $H \subset \ker \chi \subset (\mathbb{Z}/D\mathbb{Z})^{\times}$ be the values represented by the principal genus.

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Genus Theory

Theorem

Given D < 0.

- (a) H forms a subgroup of ker $\chi \subset (\mathbb{Z}/D\mathbb{Z})^{\times}$.
- (b) The values $H' \subset \ker \chi$ represented by a genus forms a coset of H.
- (c) If D = -4n, then $H = \{k^2, k^2 + n \pmod{D}\}$.
- (d) If D = 1 4n, then $H = \{k^2 \pmod{D}\}$.

Proof.

(a)
$$(x^2 + ny^2)(z^2 + nw^2) = (xz \pm nyw)^2 + n(xw \mp yz)^2$$
.
(b) $af(x,y) = (ax + \frac{b}{2}y)^2 - \frac{D}{4}y^2 \implies H' = [a]^{-1}H$.
(c) $x^2 + ny^2 \equiv x^2$ or $x^2 + n \pmod{4n}$.

<ロ> <四> <回> <三> <三> <三> <三> <三</p>

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Genus Theory

Corollary

• p is represented by the principal genus of discriminant -4n if and only if

$$p \equiv k^2, k^2 + n \pmod{4n}.$$

Especially, if the principal genus consists of only one class, then it implies that p is of the form x² + ny².
(Example: n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, ...)

For n = 14, the principal genus consists of two classes:

(2)
$$p = \begin{cases} x^2 + 14y^2 \\ 2x^2 + 7y^2 \end{cases} \iff p \equiv 1^2, 3^2, 5^2, 1^2 + 14, 3^2 + 14, 5^2 + 14 \pmod{56}$$

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Multiplication between Classes

- The genera of forms has a group structure as $\ker \chi/H$.
- Recall the identity

$$(x^{2} + ny^{2})(z^{2} + nw^{2}) = (xz \pm nyw)^{2} + n(xw \mp yz)^{2}.$$

Also, we can observe that

$$(2x^{2}+2xy+3y^{2})(2z^{2}+2zw+3w^{2}) = (2xz+xw+yz+3yw)^{2}+5(xw-yz)^{2}.$$

These suggests that the class group C(D) is *indeed* a group.

EL OQO

イロト イポト イヨト イヨト

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Multiplication between Classes

The composition [F(x,y)] of two classes [f(x,y)], [g(x,y)] is the class satisfying

$$f(x, y)g(z, w) = F(B_1(x, y; z, w), B_2(x, y; z, w))$$

where

$$B_i(x, y; z, w) = a_i xz + b_i xw + c_i yz + d_i yw.$$

... But is it well-defined?

Actually, it results in a multi-valued operation, so we have to define it more carefully.

ELE NOR

イロン イ団 とく ヨン イヨン

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Composition of Forms

A variety of definitions of composition has been given. (e.g. Gauss, Bhargava) We present Dirichlet's definition here.

Definition

Assume that $f(x,y) = ax^2 + bxy + cy^2$ and $g(x,y) = a'x^2 + b'xy + c'y^2$ have discriminant D < 0, satisfy $gcd(a, a', \frac{b+b'}{2}) = 1$. Then, there exists an integer B, unique up to mod 2aa', such that

 $B \equiv b \pmod{2a}, \quad B \equiv b' \pmod{2a'}, \quad B^2 \equiv D \pmod{4aa'}.$

The *composition* of f(x, y) and g(x, y) is the form

$$F(x,y) = aa'x^{2} + Bxy + \frac{B^{2} - D}{4aa'}y^{2}.$$

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

The Class Group

Theorem

Given D < 0.

- The composition induces a well-defined binary operation on C(D), which makes C(D) into a finite abelian group of order h(D).
- The principal class is the identity element of C(D).
- The inverse of the class $[ax^2 + bxy + cy^2]$ is the class $[ax^2 bxy + cy^2]$.

Cubic and Quartic Reciprocity

Genus Theory Revisited

Sending a class to the coset of $H \subset \ker \chi$ it represents defines a group homomorphism

$$\Phi: C(D) \to \ker \chi/H.$$

Since H contains all squares in $(\mathbb{Z}/D\mathbb{Z})^{\times}$, we can see that

- $\ker \chi/H \cong \{\pm 1\}^m$ for some m;
- the number of genera of discriminant D is a power of 2;
- $C(D)^2 \subset \ker \Phi$, i.e., $C(D)^2$ is contained in the principal genus.

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Genus Theory Revisited

However, we can say something more.

Definition

Given D < 0. Let p_1, \ldots, p_r be the odd primes dividing D. Consider

$$\chi_i(a) = (a/p_i), \quad \delta(a) = (-1)^{(a-1)/2}, \quad \epsilon(a) = (-1)^{(a^2-1)/8}$$

Then the *assigned characters* for D are:

$$\begin{array}{ll} D \equiv 1 \pmod{4} & \chi_1, \ldots, \chi_r \\ D = 4n, n \equiv 3 \pmod{4} & \chi_1, \ldots, \chi_r \\ D = 4n, n \equiv 1 \pmod{4} & \chi_1, \ldots, \chi_r, \delta \\ D = 4n, n \equiv 4 \pmod{8} & \chi_1, \ldots, \chi_r, \delta \\ D = 4n, n \equiv 6 \pmod{8} & \chi_1, \ldots, \chi_r, \delta \\ D = 4n, n \equiv 2 \pmod{8} & \chi_1, \ldots, \chi_r, \delta \\ P = 4n, n \equiv 0 \pmod{8} & \chi_1, \ldots, \chi_r, \delta \\ \end{array}$$

The number of assigned characters is denoted by μ .

< □ > < □ > < □ > < □ > < □ >

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Genus Theory Revisited

• The assigned characters give a homomorphism

$$\Psi: (\mathbb{Z}/D\mathbb{Z})^{\times} \to \{\pm 1\}^{\mu},$$

and its kernel is H.

- $|(\mathbb{Z}/D\mathbb{Z})^{\times} : \ker \chi| = 2$, so $\ker \chi/H \cong {\pm 1}^{\mu-1}$.
- We can check that C(D) has exactly $2^{\mu-1}$ elements of order ≤ 2 .

Thus, $\ker \Phi = C(D)^2,$ and we get an induced isomorphism

$$C(D)/C(D)^2 \xrightarrow{\sim} \ker \chi/H \cong \{\pm 1\}^{\mu-1}.$$

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Euler's Conjectures Revisited

(3)
$$p = x^2 + 27y^2 \iff \begin{cases} \left(\frac{-27}{p}\right) = 1, \\ 2 \text{ is a cubic residue mod } p \end{cases}$$

Note that with the genus theory, only a partial result can be achieved:

$$p = \begin{cases} x^2 + 27y^2 \\ 4x^2 + 2xy + 7y^2 \end{cases} \iff \left(\frac{-27}{p}\right) = 1.$$

ELE DOG

< □ > < □ > < □ > < □ > < □ >

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Euler's Conjectures Revisited

(3)
$$p = x^2 + 27y^2 \iff \begin{cases} \left(\frac{-27}{p}\right) = 1, \\ 2 \text{ is a cubic residue mod } p \end{cases}$$

(4)
$$p = x^2 + 64y^2 \iff \begin{cases} \left(\frac{-64}{p}\right) = 1, \\ 2 \text{ is a quartic residue mod } p \end{cases}$$

Where do the cubic and quartic residues emerge?

三日 のへで

イロト イヨト イヨト イヨト

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Recall: Modern Algebra I

The ring $\mathbb{Z}[\omega]$

- $\mathbb{Z}[\omega] = \{a + b\omega : a, b \in \mathbb{Z}\}$ where $\omega = e^{2\pi i/3} = (-1 + \sqrt{3})/2$.
- The norm of $\alpha \in \mathbb{Z}[\omega]$ is $N(\alpha) = \alpha \bar{\alpha}$.
- $\mathbb{Z}[\omega]$ is a ED, so is a PID and a UFD.
- $\bullet \ \alpha \in \mathbb{Z}[\omega]^{\times} \iff N(\alpha) = 1 \iff \alpha \in \{\pm 1, \pm \omega, \pm \omega^2\}.$
- Let p be a prime in \mathbb{Z} .
 - (a) If p = 3, then 1ω is prime in $\mathbb{Z}[\omega]$ and $3 = -\omega^2(1 \omega)^2$. (3 ramifies.)
 - (b) If $p\equiv 1 \pmod{3}$, then there is a prime $\pi\in\mathbb{Z}[\omega]$ such that p decomposes into
 - $p=\piar{\pi}$, and $\pi,ar{\pi}$ are nonassociate in $\mathbb{Z}[\omega].$ (p splits completely.)
 - (c) If $p \equiv 2 \pmod{3}$, then p remains prime in $\mathbb{Z}[\omega]$. (p inerts.)

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Theory of Cubic Residues

Fix a prime $\pi \in \mathbb{Z}[\omega]$ nonassociate to $1 - \omega$.

Then $\pi \mathbb{Z}[\omega]$ is a maximal ideal, so $\mathbb{Z}[\omega]/\pi \mathbb{Z}[\omega]$ is a field of $N(\pi)$ elements.

Hence, $(\mathbb{Z}[\omega]/\pi\mathbb{Z}[\omega])^{\times}$ is a finite group of order $N(\pi) - 1$.

Fermat's Little Theorem

If $\alpha \in \mathbb{Z}[\omega]$ is not a multiple of π , then

 $\alpha^{N(\pi)-1} \equiv 1 \pmod{\pi}.$

Legendre Symbol for Cubic Residues

The Legendre symbol $(\alpha/\pi)_3$ is the unique cubic root of unity such that

$$\left(\frac{\alpha}{\pi}\right)_3 \equiv \alpha^{(N(\pi)-1)/3} \pmod{\pi}.$$

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Cubic Reciprocity

A prime
$$\pi \in \mathbb{Z}[\omega]$$
 is *primary* if $\pi \equiv \pm 1 \pmod{3}$.

The Law of Cubic Reciprocity

If π and θ are primary primes in $\mathbb{Z}[\omega]$ of unequal norms, then

$$\left(\frac{\theta}{\pi}\right)_3 = \left(\frac{\pi}{\theta}\right)_3.$$

Supplementary Laws

If $\pi \equiv -1 \pmod{3}$ is a prime in $\mathbb{Z}[\omega]$, $\pi = -1 + 3m + 3n\omega$, then

$$\left(\frac{\omega}{\pi}\right)_3 = \omega^{m+n}, \qquad \left(\frac{1-\omega}{\pi}\right)_3 = \omega^{2m}.$$

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Primes of the form $x^2 + 27y^2$

(3)
$$p = x^2 + 27y^2 \iff \begin{cases} \left(\frac{-27}{p}\right) = 1, \\ 2 \text{ is a cubic residue mod } p \end{cases}$$

Proof.

(\Rightarrow) $p = x^2 + 27y^2 \implies (-27/p) = 1 \implies p \equiv 1 \pmod{3}$. Let $\pi = x + 3\sqrt{-3}y$ so that $p = \pi \overline{\pi}$, then π is a prime in $\mathbb{Z}[\omega]$. Since there is a natural isomorphism $\mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}[\omega]/\pi\mathbb{Z}[\omega]$,

2 is a cubic residue mod
$$p \iff \left(\frac{2}{\pi}\right)_3 = 1.$$

However, $(2/\pi)_3 \equiv (\pi/2)_3 \equiv \pi^{(N(2)-1)/3} \equiv \pi \equiv 1 \pmod{2}$. (check)

ヨヨー わすゆ
Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Primes of the form $x^2 + 27y^2$

(3)
$$p = x^2 + 27y^2 \iff \begin{cases} \left(\frac{-27}{p}\right) = 1, \\ 2 \text{ is a cubic residue mod } p \end{cases}$$

Proof.

(\Leftarrow) Write $p = \pi \bar{\pi}$ for a primary prime $\pi = a + 3b\omega \in \mathbb{Z}[\omega]$. Then we have

$$4p = 4\pi\bar{\pi} = 4(a^2 - 3ab + 9b^2) = (2a - 3b)^2 + 27b^2.$$

However, $(\pi/2)_3 = (2/\pi)_3 = 1$ implies that $\pi \equiv 1 \pmod{2}$, so a is odd, b is even. Hence, $p = x^2 + 27y^2$.

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Recall: Modern Algebra I

The ring $\mathbb{Z}[i]$

- $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}.$
- The norm of $\alpha \in \mathbb{Z}[i]$ is $N(\alpha) = \alpha \bar{\alpha}$.
- $\mathbb{Z}[i]$ is a ED, so is a PID and a UFD.
- $\bullet \ \alpha \in \mathbb{Z}[i]^{\times} \iff N(\alpha) = 1 \iff \alpha \in \{\pm 1, \pm i\}.$
- Let p be a prime in \mathbb{Z} .
 - (a) If p = 2, then 1 + i is prime in $\mathbb{Z}[i]$ and $2 = i^3(1 + i)^2$. (2 ramifies.)

(b) If $p \equiv 1 \pmod{4}$, then there is a prime $\pi \in \mathbb{Z}[i]$ such that p decomposes into

- $p=\pi ar{\pi}$, and $\pi,ar{\pi}$ are nonassociate in $\mathbb{Z}[i]$. (p splits completely.)
- (c) If $p \equiv 3 \pmod{4}$, then p remains prime in $\mathbb{Z}[i]$. (p inerts.)

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Theory of Quartic Residues

Fix a prime $\pi \in \mathbb{Z}[i]$ nonassociate to 1+i.

Then $\pi \mathbb{Z}[i]$ is a maximal ideal, so $\mathbb{Z}[i]/\pi \mathbb{Z}[i]$ is a field of $N(\pi)$ elements.

Hence, $(\mathbb{Z}[i]/\pi\mathbb{Z}[i])^{\times}$ is a finite group of order $N(\pi) - 1$.

Fermat's Little Theorem

If $\alpha \in \mathbb{Z}[i]$ is not a multiple of π , then

 $\alpha^{N(\pi)-1} \equiv 1 \pmod{\pi}.$

Legendre Symbol for Quartic Residues

The Legendre symbol $(\alpha/\pi)_4$ is the unique quartic root of unity such that

$$\left(\frac{\alpha}{\pi}\right)_4 \equiv \alpha^{(N(\pi)-1)/4} \pmod{\pi}.$$

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Quartic Reciprocity

A prime
$$\pi \in \mathbb{Z}[i]$$
 is primary if $\pi \equiv \pm 1 \pmod{2(1+i)}$.

The Law of Quartic Reciprocity

If π and θ are distinct primary primes in $\mathbb{Z}[i],$ then

$$\left(\frac{\theta}{\pi}\right)_4 = (-1)^{(N(\theta)-1)(N(\pi)-1)/16} \left(\frac{\pi}{\theta}\right)_4$$

Supplementary Laws

If $\pi = a + bi$ is a primary prime in $\mathbb{Z}[i]$, then

$$\left(\frac{i}{\pi}\right)_4 = i^{-(a-1)/2}, \qquad \left(\frac{1+i}{\pi}\right)_4 = i^{(a-b-1-b^2)/4}.$$

ELE DOG

イロト イヨト イヨト イヨト

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Primes of the form $x^2 + 64y^2$

(4)
$$p = x^2 + 64y^2 \iff \begin{cases} \left(\frac{-64}{p}\right) = 1, \\ 2 \text{ is a quartic residue mod } p \end{cases}$$

Proof.

(
$$\Rightarrow$$
) $p = x^2 + 64y^2 \implies (-64/p) = 1 \implies p \equiv 1 \pmod{4}$.
Let $\pi = x + 8iy$ so that $p = \pi \overline{\pi}$, then π is a prime in $\mathbb{Z}[i]$.
Since there is a natural isomorphism $\mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}[i]/\pi\mathbb{Z}[i]$,

2 is a quartic residue mod
$$p \iff \left(\frac{2}{\pi}\right)_4 = 1.$$

However, $(2/\pi)_4 = i^{a \cdot 8b/2} = 1$. (check)

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Primes of the form $x^2 + 64y^2$

(4)
$$p = x^2 + 64y^2 \iff \begin{cases} \left(\frac{-64}{p}\right) = 1, \\ 2 \text{ is a quartic residue mod } p \end{cases}$$

Proof.

(\Leftarrow) Write $p = \pi \bar{\pi}$ for a primary prime $\pi = a + bi \in \mathbb{Z}[i]$. Then we have

$$p = \pi \bar{\pi} = a^2 + b^2.$$

However, $(2/\pi)_4 = i^{ab/2} = 1$ implies that b is divisible by 8. Hence, $p = x^2 + 64y^2$.

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Peeking at Further Generalization

The cubic and quartic residual conditions can be interpreted as:

$$x^3 - 2 \equiv 0 \pmod{p}, \quad x^4 - 2 \equiv 0 \pmod{p}$$
 has an integer solution.

Guess

Given n > 0, there is a polynomial $f_n(x) \in \mathbb{Z}[x]$ such that

$$p = x^2 + ny^2 \iff \begin{cases} \left(\frac{-n}{p}\right) = 1, \\ f_n(x) \equiv 0 \pmod{p} \text{ has an integer solution.} \end{cases}$$

The Class Field Theory will enable us to establish such a theorem.

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Number Fields

Definition

- A number field K is a finite extension of \mathbb{Q} .
- The ring of integers O_K of K is the set of algebraic integers of K, i.e., the set of all α ∈ K which are roots of a monic integer polynomial.
- Given a nonzero ideal $\mathfrak{a} \subset \mathcal{O}_K$, its *norm* is $N(\mathfrak{a}) = |\mathcal{O}_K/\mathfrak{a}|$.

FACT

- \mathcal{O}_K is a subring of \mathbb{C} whose field of fractions is K.
- \mathcal{O}_K is a free \mathbb{Z} -module of rank $[K : \mathbb{Q}]$.

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Prime Factorization

In general, \mathcal{O}_K is not a UFD. (e.g. $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}))$

However, we have something similar.

FACT

- \mathcal{O}_K is a Dedekind domain, that is,
 - O_K is integrally closed, i.e., if α ∈ K is a root of a monic polynomial with coefficients in O_K, then α ∈ O_K;
 - \mathcal{O}_K is Noetherian;
 - Every nonzero prime ideal of \mathcal{O}_K is maximal.

Corollary: Prime Factorization

Every nonzero ideal $\mathfrak{a} \subset \mathcal{O}_K$ can be uniquely written as a product of prime ideals.

Furthermore, such ideals are exactly the prime ideals containing \mathfrak{a} .

イロト イヨト イヨト イヨト

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Ramification of Primes

Consider number fields $L/K/\mathbb{Q}$, then \mathcal{O}_K is a subring of \mathcal{O}_L .

For a prime $\mathfrak{p} \subset \mathcal{O}_K$, $\mathfrak{p} \mathcal{O}_L \subset \mathcal{O}_L$ has a prime factorization

$$\mathfrak{p}\mathcal{O}_L=\mathfrak{P}_1^{e_1}\ldots\mathfrak{P}_g^{e_g}.$$

Definition

- The ramification index of \mathfrak{p} in \mathfrak{P}_i is $e_{\mathfrak{P}_i|\mathfrak{p}} = e_i$.
- The *inertial degree* of \mathfrak{p} in \mathfrak{P}_i is the degree $f_{\mathfrak{P}_i|\mathfrak{p}} = f_i$ of the residue field extension $\mathcal{O}_K/\mathfrak{p} \subset \mathcal{O}_L/\mathfrak{P}_i$.

Theorem

$$\sum_{i=1}^{g} e_i f_i = [\mathcal{O}_L/\mathfrak{p}\mathcal{O}_L : \mathcal{O}_K/\mathfrak{p}] = [L:K].$$

Younghun Jo

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Ramification of Primes

Now we assume that L/K is Galois.

Theorem

- $\operatorname{Gal}(L/K)$ acts transitively on the primes $\mathfrak{P}_1, \ldots, \mathfrak{P}_r$.
- $\mathfrak{P}_1, \ldots, \mathfrak{P}_r$ all have the same ramification index e and the same inertia degree f, so

$$efg = [L:K].$$

Definition

- \mathfrak{p} ramifies if e > 1, and is unramified if e = 1.
- \mathfrak{p} splits completely if e = f = 1.
- \mathfrak{p} inerts (i.e., remains prime) if e = g = 1, f > 1.

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Ideal Class Group

Definition

- A fractional ideal a ⊂ K is a nonzero finitely generated O_K-module, or equivalently, a = αb for α ∈ K and an ideal b ⊂ O_K.
- The set of fractional ideals is denoted by I_K , and the set of principal fractional ideals is denoted by P_K .
- The (ideal) class group is $C(\mathcal{O}_K) = I_K/P_K$.
- The class number $h(\mathcal{O}_K)$ is the cardinality of $C(\mathcal{O}_K)$.

FACT

 $C(\mathcal{O}_K)$ is a finite abelian group.

Remark

$$h(\mathcal{O}_K)=1$$
 if and only if \mathcal{O}_K is a PID.

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Quadratic Number Fields

Here, we consider the number field $K=\mathbb{Q}(\sqrt{N})$ where $N\neq 0,1$ is squarefree.

Ring of Integer

• The discriminant of K is
$$d_K = \begin{cases} N & \text{if } N \equiv 1 \pmod{4}, \\ 4N & \text{otw.} \end{cases}$$

• The ring of integers is given by

$$\mathcal{O}_K = \mathbb{Z}\left[\frac{d_K + \sqrt{d_K}}{2}\right] = \begin{cases} \mathbb{Z}[\sqrt{N}] & \text{if } N \not\equiv 1 \pmod{4}, \\ \mathbb{Z}\left[\frac{1 + \sqrt{N}}{2}\right] & \text{if } N \equiv 1 \pmod{4}. \end{cases}$$

Note that for $K = \mathbb{Q}(\sqrt{-n})$,

$$\mathcal{O}_K = \mathbb{Z}[\sqrt{-n}] \iff n \text{ is squarefree, } n \not\equiv 3 \pmod{4}.$$

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Quadratic Number Fields

Units of $\mathbb{Q}(\sqrt{N})$

- For real quadratic fields $(d_K > 0)$, \mathcal{O}_K^{\times} is infinite. (Pell's equation)
- $\mathcal{O}_{\mathbb{Q}(\sqrt{-3})}^{\times} = \{\pm 1, \pm \omega, \pm \omega^2\}, \ \mathcal{O}_{\mathbb{Q}(i)}^{\times} = \{\pm 1, \pm i\}.$
- For other imaginary quadratic fields ($d_K < 0$), $\mathcal{O}_K = \{\pm 1\}$.

Primes of $\mathbb{Q}(\sqrt{N})$

Let p be a prime in \mathbb{Z} .

- If $(d_K/p) = 0$, then $p\mathcal{O}_K = \mathfrak{p}^2$ for a prime $\mathfrak{p} \subset \mathcal{O}_K$. ($p\mathbb{Z}$ ramifies.)
- If $(d_K/p) = 1$, then $p\mathcal{O}_K = \mathfrak{p}\mathfrak{p}'$ where $\mathfrak{p} \neq \mathfrak{p}'$ are prime in \mathcal{O}_K . ($p\mathbb{Z}$ splits completely.)
- If $(d_K/p) = -1$, then $p\mathcal{O}_K \subset \mathcal{O}_K$ is a prime. ($p\mathbb{Z}$ inerts.)

<ロ> <日> <日> <日> <日> <日> <日> <日</p>

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

Quadratic Number Fields

Class Group of $\mathbb{Q}(\sqrt{N})$

Let K be an imaginary quadratic field of discriminant $d_K < 0$.

• If $f(x,y) = ax^2 + bxy + cy^2$ is a primitive form of discriminant d_K , then

$$\left\langle a, \frac{-b + \sqrt{d_K}}{2} \right\rangle = \left\{ ma + n \frac{-b + \sqrt{d_K}}{2} : m, n \in \mathbb{Z} \right\}$$

is an ideal of \mathcal{O}_K .

• The map $f(x, y) \mapsto \langle a, (-b + \sqrt{d_K})/2 \rangle$ induces an isomorphism between the form class group $C(d_K)$ and the ideal class group $C(\mathcal{O}_K)$.

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

The Artin Symbol

The Artin Symbol

Let L/K be a Galois extension, and let $\mathfrak{p} \subset \mathcal{O}_K$ be a prime unramified in L. If $\mathfrak{P} \subset \mathcal{O}_L$ contains $\mathfrak{p}\mathcal{O}_L$, then there is a unique element $\left(\frac{L/K}{\mathfrak{P}}\right) \in \operatorname{Gal}(L/K)$, called the Artin symbol, such that for all $\alpha \in \mathcal{O}_L$,

$$\left(\frac{L/K}{\mathfrak{P}}\right)(\alpha) \equiv \alpha^{N(\mathfrak{p})} \pmod{\mathfrak{P}}.$$

FACT

- If $\sigma \in \operatorname{Gal}(L/K)$, then $\left(\frac{L/K}{\sigma(\mathfrak{P})}\right) = \sigma\left(\frac{L/K}{\mathfrak{P}}\right)\sigma^{-1}$.
- The order of $\left(\frac{L/K}{\mathfrak{P}}\right)$ is the inertial degree $f = f_{\mathfrak{P}|\mathfrak{p}}$.
- \mathfrak{p} splits completely in L if and only if $\left(\frac{L/K}{\mathfrak{P}}\right) = 1$.

ヘロマ ヘロマ ヘロマ ヘロマ

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

The Artin Map

Notes

- If L/K is abelian, then $\left(\frac{L/K}{\sigma(\mathfrak{P})}\right) = \sigma\left(\frac{L/K}{\mathfrak{P}}\right)\sigma^{-1} = \left(\frac{L/K}{\mathfrak{P}}\right)$, so the Artin symbol only depends on the underlying prime $\mathfrak{p} = \mathcal{O}_K \cap \mathfrak{P}$. Hence, $\left(\frac{L/K}{\mathfrak{p}}\right) = \left(\frac{L/K}{\mathfrak{P}}\right)$ is well-defined.
- If L/K is unramified, then the Artin symbol can be defined with all $\mathfrak{p} \subset \mathcal{O}_K$.

The Artin Map

If L/K is an unramified abelian extension, then the Artin symbol defines the homomorphism, called the Artin map,

$$\left(\frac{L/K}{\cdot}\right): I_K \to \operatorname{Gal}(L/K).$$

Quadratic Form

Cubic and Quartic Reciprocity

Hilbert Class Field Theory

The Hilbert Class Field

The Hilbert Class Field

Given a number field K, there exists the maximal unramified abelian extension

L = HCF(K) of K, which is called the *Hilbert class field* of K.

The Artin Reciprocity Theorem

- If L = HCF(K), then the Artin map (^{L/K}/₋) : I_K → Gal(L/K) is surjective, and its kernel is exactly the subgroup P_K of principal fractional ideals.
- Thus the Artin map induces an isomorphism $C(\mathcal{O}_K) \xrightarrow{\sim} \operatorname{Gal}(L/K)$.

Corollary

$$\mathfrak{p}$$
 splits completely in $L \iff \left(\frac{L/K}{\mathfrak{p}}\right) = 1 \iff \mathfrak{p}$ is principal.

Hilbert Class Field Theory

The Primes of the Form $x^2 + ny^2$

Let $K = \mathbb{Q}(\sqrt{-n})$ and $L = \mathrm{HCF}(K)$.

Assume that n is squarefree and $n \not\equiv 3 \pmod{4}$, so that $\mathcal{O}_K = \mathbb{Z}[\sqrt{-n}]$.

Theorem

If $p \nmid n$ is an odd prime, then

$$p = x^2 + ny^2 \iff p$$
 splits completely in L .

Proof.

$$\begin{array}{ll} Proof.\\ p = x^{2} + ny^{2}\\ \iff p\mathcal{O}_{K} = \mathfrak{p}\bar{\mathfrak{p}}, \ \mathfrak{p} \neq \bar{\mathfrak{p}} \ \text{and} \ \mathfrak{p} \ \text{is principal in } \mathcal{O}_{K}.\\ \iff p\mathcal{O}_{K} = \mathfrak{p}\bar{\mathfrak{p}}, \ \mathfrak{p} \neq \bar{\mathfrak{p}} \ \text{and} \ \mathfrak{p} \ \text{splits completely in } L.\\ \iff p \ \text{splits completely in } L. \ (\because L/\mathbb{Q} \ \text{is Galois.}) \ \Box \\ \end{array} \qquad \begin{array}{ll} L \ \supset \ \mathcal{O}_{L} \ \supset \ \mathfrak{P}, \ \bar{\mathfrak{P}} \\ & & & \\ K \ \supset \ \mathcal{O}_{K} \ \supset \ \mathfrak{p}, \ \bar{\mathfrak{p}} \\ & & \\ & & \\ H \\ & & \\ \end{array} \qquad \begin{array}{ll} U \ \supset \ \mathcal{O}_{K} \ \supset \ \mathfrak{P}, \ \bar{\mathfrak{p}} \\ & & \\ H \\ & & \\ \end{array} \qquad \begin{array}{ll} U \ \supset \ \mathcal{O}_{K} \ \supset \ \mathfrak{P}, \ \bar{\mathfrak{p}} \\ & & \\ H \\ & & \\ U \\ & & \\ \end{array} \qquad \begin{array}{ll} U \ \supset \ \mathcal{O}_{K} \ \supset \ \mathfrak{P}, \ \bar{\mathfrak{p}} \\ & & \\ H \\ & & \\ \end{array} \qquad \begin{array}{ll} U \ \supset \ \mathcal{O}_{K} \ \supset \ \mathfrak{P}, \ \bar{\mathfrak{P}} \\ & & \\ H \\ & & \\ U \\ & & \\ \end{array} \qquad \begin{array}{ll} U \ \supset \ \mathcal{O}_{K} \ \supset \ \mathfrak{P}, \ \bar{\mathfrak{P}} \\ & & \\ \end{array} \qquad \begin{array}{ll} U \ \supset \ \mathcal{O}_{K} \ \supset \ \mathfrak{P}, \ \bar{\mathfrak{P}} \\ & & \\ \end{array} \qquad \begin{array}{ll} U \ \supset \ \mathcal{O}_{K} \ \supset \ \mathfrak{P}, \ \bar{\mathfrak{P}} \end{array} \qquad \begin{array}{ll} U \ \supset \ \mathcal{O}_{K} \ \supset \ \mathfrak{P}, \ \bar{\mathfrak{P}} \end{array}$$

<ロ> <四> <回> <三> <三> <三> <三> <三</p>

Quadratic Form

Cubic and Quartic Reciprocity 00000000000 Hilbert Class Field Theory

The Primes of the Form $x^2 + ny^2$

Theorem

Let K be an imaginary quadratic field, and let L be a finite extension of K which is Galois over \mathbb{Q} . Then:

• There is a real algebraic integer α such that $L = K(\alpha)$.

• Let $f(x) \in \mathbb{Z}[x]$ be the minimal polynomial of α . If $p \nmid \operatorname{disc} f$ is a prime, then

$$p$$
 splits completely in $L \iff \begin{cases} \left(\frac{d_K}{p}\right) = 1, \\ f(x) \equiv 0 \pmod{p} \text{ has an integer solution.} \end{cases}$

Cubic and Quartic Reciprocity 00000000000 Hilbert Class Field Theory

The Primes of the Form $x^2 + ny^2$

The Main Theorem

Let n > 0 be a squarefree integer, $n \not\equiv 3 \pmod{4}$.

Then, there is a monic irreducible polynomial $f_n(x) \in \mathbb{Z}[x]$ of degree h(-4n) such that if an odd prime p divides neither n nor disc f_n , then

$$p = x^2 + ny^2 \iff \begin{cases} \left(\frac{-n}{p}\right) = 1, \\ f_n(x) \equiv 0 \pmod{p} \text{ has an integer solution.} \end{cases}$$

Furthermore, $f_n(x)$ may be taken to be the minimal polynomial of a real algebraic integer α for which $L = K(\alpha)$ is the Hilbert class field of $K = \mathbb{Q}(\sqrt{-n})$.

Cubic and Quartic Reciprocity 00000000000 Hilbert Class Field Theory

The Primes of the Form $x^2 + 14y^2$

Recall:

(5)
$$p = \begin{cases} x^2 + 14y^2 \\ 2x^2 + 7y^2 \end{cases} \iff p \equiv 1, 9, 15, 23, 25, 39 \pmod{56}$$

Let $K = \mathbb{Q}(\sqrt{-14})$ and $L = K(\alpha)$ where $\alpha = \sqrt{2\sqrt{2}-1}$.

Since h(-56) = 4 and L is an unramified abelian extension of K of degree 4, L is the Hilbert class field of K. Note that α is a real integral primitive element of L over K, and its minimal polynomial is $f_{14}(x) = (x^2 + 1)^2 - 8$. Thus,

$$p = x^2 + 14y^2 \iff \begin{cases} \left(\frac{-14}{p}\right) = 1, \\ (x^2 + 1)^2 \equiv 8 \pmod{p} \text{ has an integer solution.} \end{cases}$$

Further Remarks

- Knowing $f_n(x)$ is equivalent to knowing the Hilbert class field.
- Actually, our main theorem is not applicable for n=27,64 since these are not squarefree.

However, we can further generalize the main theorem for every n > 0, by using the *ring class field* of the order $\mathbb{Z}[\sqrt{-n}]$ in $\mathbb{Q}(\sqrt{-n})$ in place of the Hilbert class field.

• Our main theorem is not constructive. The constructive solution of $p=x^2+ny^2 \mbox{ is much more complicated}.$

- D. Cox, Primes of the Form $x^2 + ny^2$, Second Edition, Wiley, 2013.
- K. Ireland & M. Rosen, A Classical Introduction to Modern Number Theory, Second Edition, Springer, 1990.

= 900

< □ > < □ > < □ > < □ > < □ >